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Monitoring qualitative spatiotemporal change
for geosensor networks

Abstract. Recent technological advances in geosensor networks demand
new models of distributed computation with dynamic spatial informa-
tion. This paper presents a computational model of spatial change in
dynamic regions (such as may be derived from discretizations of con-
tinuous fields) founded on embeddings of graphs in orientable surfaces.
Continuous change, connectedness, and regularity of dynamic regions are
defined and local transition rules are used to constrain region evolution
and enable more efficient inference of a region’s state. The model pro-
vides a framework for the detection of global high-level events based on
local low-level “snapshot” spatiotemporal data. The approach has par-
ticular relevance to environmental monitoring with geosensor networks,
where technological constraints make the detection of global behavior
from local conditions highly advantageous.
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1 Introduction and background

This paper presents a computational model of spatial change that can be used
to represent and distinguish certain kinds of spatial events. The spatial objects
involved in these events are regions, for example derived from discretizations of
continuous fields. The overall aim of this research is to develop a framework that
can bridge the gap between the low-level detail of spatiotemporal information
systems and users’ high-level domain conceptualizations in terms of change, pro-
cess, and event. At the same time, the framework is explicitly computational,
being discrete and compatible with efficient, local processing.

The goal of efficient, local detection of change is motivated primarily by
technological developments in geosensor networks. A geosensor network is a dis-
tributed ad-hoc wireless network of sensor-enabled miniature computing plat-
forms (a sensor network) that monitors phenomena in geographic space (Nittel
et al., 2004). The model developed in this paper is designed to be applicable
to geosensor networks, where the generation of high-level qualitative knowledge
about complex dynamic geographic phenomena, based on real-time sensor data,
is essential to spatial decision support. However, the model is also intended to be
general enough to be efficiently applied across a range of computational environ-
ments, including cellular automata and conventional spatiotemporal databases.

This work provides a computational model of spatiotemporal data that en-
ables us to represent and query events on regions. Our approach is first to for-
mally define a simple, discrete model of space (section 3) and show how this
model can be used to represent continuous change, regularity, and connected-
ness in dynamic regions (section 4). Using local transition rules to constrain
change, several different representations of continuous change can be realized
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(section 5). In turn, this enables different types of spatial events to be detected
(section 6) for one or more regions.

In summary, the primary contributions of this paper are the development of
a model of space-time that:

– enables the representation and definition of different types of spatial events
resulting from continuous changes in the real world;

– is computationally oriented, being discrete and compatible with efficient and
local processing; and

– helps bridge the gap between of high-level conceptualizations of events and
low-level “snapshot” spatiotemporal data.

1.1 Motivation

As an example, consider the changes that might occur during the lifetime of an
oil slick, following an accidental oil tanker collision. The oil slick will appear at
the point in time when the accident occurs. It is likely that the slick will then
rapidly expand. Ocean currents may cause a hole to form in the slick, later on
leading slick to break up and split into different parts. As the oil slick is contained
and treated, the different parts may begin to contract and ultimately disappear.
These events are the results of continuous changes in the oil slick, but data about
the extent of an oil slick can only be captured in the form of discrete snapshots
at particular points in time and space (i.e., from sensor readings). Further, the
key events italicized above are not explicitly represented by the spatiotemporal
snapshot data. A pollution management team might deploy a dense array of
sensors throughout the vicinity of slick in order to provide real-time information
about when and where these different events are occurring (e.g., when the slick
started to contract and where the slick split).

Although this motivational scenario is somewhat beyond the capabilities of
today’s technology, the development of similar applications of geosensor networks
are a topic for current research (e.g., Xu and Lee, 2005). The model presented
in this paper provides a basis for efficiently deriving salient events using local
processing of spatiotemporal information within the geosensor network itself.

2 Background

The background to this work is the evolution of formal and computational models
of dynamic spatial phenomena (2.1) and the state-of-the-art in geosensor network
technology (2.2).

2.1 Dynamic spatial phenomena

Current spatiotemporal information systems typically represent change implic-
itly using a series of static snapshots. The general forms of queries to such sys-
tems are “What was the state of this object at that time?” or “At what time did
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this object have that state?” (Abraham and Roddick, 1999; Snodgrass, 1995;
Worboys, 1994). An objective of recent research is the explicit representation
of spatial events (Hornsby and Egenhofer, 2000; Worboys, 2005; Worboys and
Hornsby, 2004). Galton (2004) makes the distinction between histories, which
are functions from a temporal domain to attribute values, or properties of ob-
jects, and chronicles, which treat dynamic phenomena as collections of happen-
ings. From an ontological perspective, we can make an initial division of entities
that exist in the world into continuants that endure through time (e.g., oceans,
oil tankers, and oil slicks), and occurrents that happen or occur and are then
gone (e.g., ocean tides, currents, or the splitting of an oil slick into disconnected
regions). Grenon and Smith (2004) call temporal sequences of object configura-
tions the SNAP ontology, and the event/action view, the SPAN ontology. It is
the identification of SPAN entities in the evolution of spatial regions that is the
focus of this paper.

2.2 Geosensor networks

As defined above, a geosensor network is a distributed ad-hoc wireless network
of sensor-enabled miniature computing platforms that monitors phenomena in
geographic space (Nittel et al., 2004). Individual sensor nodes are low cost and
low power potentially allowing dense networks of nodes to be deployed to moni-
tor environmental phenomena. Today’s geosensor networks are relatively small,
comprising tens or hundreds of sensors. For example, networks of between 50
and 150 nodes have been used to monitor habitat micro-climates for a rare
species of petrel in Maine’s Great Duck Island (Szewczyk et al., 2004a,b). Such
geosensor networks provide the capability to monitor geographic phenomena in
remote, sensitive, or hazardous environments at much higher spatial and tem-
poral granularity than possible with conventional monitoring technology. In the
near future, geosensor networks will comprise thousands or millions of geosensors
(e.g., “smart dust”, Kahn et al., 1999).

There are many research and technological challenges to overcome before re-
liable geosensor networks of two or three orders of magnitude larger than today’s
networks become a reality. Current research into geosensor networks is proceed-
ing rapidly on several fronts. For example, power consumption is an overriding
factor in many aspects of geosensor network design. The limited battery power of
untethered sensor nodes means energy conservation is especially important with
respect to power-intensive operations like communication (Singh et al., 1998).
Another area toward which a great deal of activity has been directed is the design
of efficient and robust routing algorithms for geosensor networks (e.g., Karp and
Kung, 2000; Perkins et al., 2001; Braginsky and Estrin, 2002). Finally, determin-
ing the spatial location of nodes (termed localization) also presents particular
problems to geosensor networks (Akyildiz et al., 2002). Conventional geodetic
positioning systems, like GPS, require too much power and are not robust enough
for geosensor networks (e.g., GPS doesn’t operate indoors or outdoors where the
GPS signal is occluded by a “radio shadow”).
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Underlying much research into geosensor networks is the aim of “decentral-
ized coordination with local decision making to achieve the intended global goal”
(Estrin et al., 2000). Decentralization has at least two major benefits. First, de-
centralized coordination implies lower communication overheads, and thus lower
power consumption. Second, decentralization simplifies geosensor network algo-
rithms and architectures, making them more scalable, reliable, and robust. The
overall approach proposed in this paper is in keeping with the aim of greater
decentralization in geosensor networks. However, unlike most research in the
domain of geosensor networks, our model is explicitly spatial and temporal, en-
abling the identification of salient qualitative spatial events in dynamic spatial
phenomena.

3 Combinatorial maps and triangulations

This section develops the formal bases for evolving spatial structures in two di-
mensions. The foundations of this work are embeddings of graphs in orientable
surfaces. An embedding of a graph in a surface is an assignment of its nodes and
edges to points and paths on the surface. The assignment is a graph isomor-
phism, and paths must only intersect at embedded nodes. In the case that the
surface is orientable, an orientation can be assigned to any of its points. This
orientation can be used to provide an (anti-clockwise) cyclic order of embedded
edges around each embedded vertex. The additional information that the cyclic
orders provides enable us, roughly, to characterize the embedded structure up to
homeomorphism. In the work that follows, all the embeddings are triangulations
of the surface.

The discrete structure we use to formally model this embedding is the com-
binatorial map. The combinatorial map was first introduced by Edmonds (1960)
and developed by Tutte (1984), Guibas and Stolfi (1985), and others (e.g., Du-
fourd and Puitg, 2000).

Definition 1. A ( 2-dimensional) oriented combinatorial map, or just map, M,
is a triple 〈D,Θ0, Θ1〉, where D is a finite set of elements, called darts, Θ0 is an
involutory bijection on D (i.e., Θ2

0 = 1), and Θ1 is a bijection on D. We may
also assume that Θ0 has no fixed points.

In terms of a geosensor network, each dart d can be thought of as the capabil-
ity of a sensor for a potential communication with partner within its communica-
tion range. The dart Θ0d represents the complementary capability of its partner.
The function Θ1 gives rise to a permutation that can be used to represent the
sensor nodes themselves. Each permutation contains a counter-clockwise, cyclic
ordering of darts around a node.

Figure 1 shows a simple example of a combinatorial map where D =
{1, ..., 14}. In this example, Θ0 and Θ1 are given in cyclic notation as:

Θ0 = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)
Θ1 = (1 10 11)(2 3)(4 12 13 5)(6 7)(9 8 14)
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Fig. 1. Combinatorial map example

It can be seen that Θ0 partitions the set of darts into sets of pairs of darts,
and each such pair is called an edge of map M. In our example, the edges are
a = {1, 2}, b = {3, 4}, c = {5, 6}, d = {7, 8}, e = {9, 10}, f = {11, 12}, and
g = {13, 14}. It is also clear that each of the cycles of Θ1 represents a vertex of
M. In the example, the vertices are α = (1 10 11), β = (2 3), γ = (4 12 13 5),
δ = (6 7), and ε = (9 8 14). We note that each dart uniquely determines an edge
and a vertex.

It is straightforward to use Θ0 and Θ1 to calculate the ordering of edges
round faces in a combinatorial map. The cycles of the composition Θ0Θ1 gives
the ordering of darts, and converting the darts to their (unique) associated edges
gives the ordering of edges. In the example above:

Θ1Θ0 = (1 3 12)(11 13 9)(14 5 7)(10 8 6 4 2)

and so the faces are bounded by edges abf, fge, gcd, and gfedcba. In general, a
face of map M is a cycle of edges associated with a cycle of darts in Θ1Θ0.
Alternatively, focusing on vertices rather than edges, we can consider the cycle
of vertices (uniquely) associated with the edges to be the face. In our example,
the faces are αβγ, αγε, and γδε.

Let E = E(M) be the set of edges and F = F (M) be the set of faces of M.

Definition 2. Let M be a given combinatorial map. A triangle in M is a face in
F = F (M) that is a 3-cycle of edges associated with a 3-cycle of darts in Θ1Θ0.
Alternatively and equivalently, a triangle is a 3-cycle of vertices associated with
a 3-cycle of darts in Θ1Θ0.

Definition 3. A triangulation ∆ is a combinatorial map E which has the prop-
erty that every edge in E belongs to either one or two triangles.

From now on we will work with triangulations rather than more general combi-
natorial maps. Suppose from now on that our underlying triangulation is ∆.



8

Definition 4. A (triangulated) region R in ∆ is a subset of triangles of ∆. The
set of all regions in ∆ is denoted R(∆).

Definition 5. Let ε be an edge in ∆ and R be a triangulated region in ∆. ε is
an interior edge of R if it belongs to two distinct triangles in R. ε is a boundary
edge of R if it belongs to exactly one triangle in R. Otherwise, ε is an exterior
edge of R.

Definition 6. Let β be a vertex in ∆ and R be a triangulated region in ∆. β is
an interior vertex of R if it belongs to a triangle in R and is incident with no
boundary edges of R. β is a boundary vertex of R if it is incident with at least
one boundary edge. Otherwise, β is an exterior vertex of R.

Definition 7. Let δ be a triangle in ∆ and R be a triangulated region in ∆. δ
is an interior triangle of R if δ ∈ R and all edges of δ are interior edges of R. δ
is a boundary triangle of R if δ ∈ R and at least one of δ is a boundary edge of
R. Otherwise, δ is a exterior triangle of R.

Definition 8. A region R is regular if each boundary vertex of R is incident
with exactly two boundary edges of R.

Note regularity rules out cases where triangles meet only at their vertices.

4 Dynamic regions arising from spatiotemporal fields

Up to now, the constructions apply to triangulations on any orientable sur-
face. We will now be specifically concerned with triangulations embedded in the
Euclidean plane. We also introduce into the formal model the notion that the
triangulations can evolve through time. This will happen if we are modeling dy-
namic regions that arise from changing geographic phenomena, represented by
spatiotemporal scalar fields (for example, spatiotemporal variations in levels of
carbon dioxide in the atmosphere).

Formally, an ST scalar field is a function

f : S × T → D

where S, T , and D, are spatial, temporal, and scalar value domains, respectively.
With our focus on spatial variation with time, we can restructure this field as

f : T → (S → D)

so, for each moment in time, we have a spatial variation of values from the value
domain.

Assume that S is discretized as a triangulation framework ∆, as defined
above. We want to view the state of the discretized field at any moment in time
as an assignment of values from a discretized version of D to each of the triangles.
In the simplest case, there is an assignment of values from {0, 1} to each of the
triangles in the triangulation ∆ imposed by the field (this may be implemented
through a threshold value, for example). This function can be used to induce a
region R (a subset of triangles of ∆). Note that we have slightly overloaded our
notation here, since R is now a function from T to a region of ∆.
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4.1 Continuity and incremental change

We want a region R to evolve continuously through time in order to identify
salient changes to R. An initial thought is to make the field function f contin-
uous in the usual sense. However, this does not necessarily lead to continuously
evolving regions. As a trivial counterexample, consider a field that is constant
throughout the space and whose scalar values are continuously increasing with
time. At some moment, all values may rise to our threshold value for detection
of the field. Thus, the corresponding discretized region goes from empty to the
universe in one jump. In order to avoid this, our definition of continuity works
on the evolving region itself. The following definitions will also work with stand-
alone triangulated regions, and it is not a requirement of this model that a region
be derived from an underlying field.

Let R : T → R(∆) be a temporally evolving region. Suppose R only un-
dergoes a finite number of changes during its evolution. The evolution can be
modeled by the sequence R1, ...,Rn.

Definition 9. R = [R1, ...,Rn] is continuous if

1. For all i ∈ {1, ..., n− 1} no interior edge of Ri is an exterior edge of Ri+1

2. For all i ∈ {1, ..., n− 1} no exterior edge of Ri is an interior edge of Ri+1

Definition 10. R = [R1, ...,Rn] is incremental if

1. For all i ∈ {1, ..., n− 1} Ri and Ri+1 differ by the insertion or deletion of a
single triangle.

Note that incremental change is a special case of continuity. Figures 2 and 3
show examples of continuous but not incremental change (figure 2), and incre-
mental change (figure 3) to a triangulated region.

R
i

R
i+1

R
i+2

R
i+3

Fig. 2. Continuous but not incremental change (triangles to be added or removed
indicated with dashed boundary)
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R
i

R
i+1

R
i+2

R
i+3

Fig. 3. Incremental change (triangle to be added or removed indicated with dashed
boundary)

4.2 Connectedness and simple connectedness

A region R ∈ R(∆) is path connected (or just connected) if for any two vertices
v, v′ of R, there exists a path from v to v′ entirely contained within R. We can
distinguish two kinds of path connectedness of relevance to this discussion, weak
path connectedness and strong path connectedness (Worboys and Bofakos, 1993)
(again, we omit the word “path” if no ambiguity results). In strong connect-
edness, there is a path from v to v′ such that every point on the path, with
the possible exception of the beginning and end points, can be surrounded by
an open set (in the usual topology of the embedding plane) entirely contained
within R (figure 4a); with weak connectedness, this condition is not satisfied
(figure 4b). A triangulation R is simply connected if any simple closed path in
R can be shrunk to a point continuously in R. As before, continuity is with
respect to the usual topology of the plane. Intuitively, a region on a surface is
simply connected if it contains no holes. A simply connected triangulation does
not need to be regular. We may note that any regular, connected triangulation
is also strongly connected. However, an irregular connected triangulation may
also be strongly connected (see figure 4a).

a b

Fig. 4. Strongly-connected (a) and weakly connected (b) irregular triangulated regions

Computationally, determining whether a region R is connected can be
achieved by considering the connectivity of the underlying graphs for R. For
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example, if a standard graph search (for example, a breadth-first search) of the
nodes and edges of the region R reveals that the graph is connected, then it fol-
lows that the region R is also connected. Using the dual adjacency graph formed
by the set of faces (nodes) and adjacency between faces (edges) for R we can also
check for weak connectivity. If R is connected, but the dual adjacency graph is
not connected then R must be weakly connected. Conversely, if R is connected,
and dual adjacency graph is connected then R must be strongly or simply con-
nected. Distinguishing between strong and simple connection may require a more
sophisticated test, but as we shall see in later sections, such properties may be
inferred under certain conditions.

5 Region evolution

In this section we start to consider the sorts of changes that can occur to an
evolving region observed at two proximal moments. In all cases, only a single
triangle at a time is allowed to be inserted or deleted: the region is assumed to
evolve incrementally (and therefore continuously). Future work will also address
modeling continuous but not incremental evolution of regions. Although the
region changes only incrementally, we assume that the temporal granularity of
updates to the region is fine enough such that the region closely approximates
changes in the underlying field itself. The aim of “tracking” the development
of field with discrete elements of the triangulation is illustrated in Figure 5,
where the region of above threshold activity in a continuously evolving field is
captured by discrete incremental changes to the triangulated region, shown at
three stages, R5, R64, and R115.

R
5

R
64

R
115

Fig. 5. Tracking the continuous evolution of a field

Incremental change constrains the evolutions of a dynamic region. In order
to enable efficient local monitoring of salient changes, we may wish to further
constrain the allowable changes to a region. A computationally efficient way of
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doing this is to define local conditions that must be met in order for a specified
change to occur. We refer to these local rules as transition rules, as they are akin
to the transition rules found in cellular automata.

In the context of geosensor networks, the overall objective is to embed transi-
tion rules locally within each geosensor. In essence, these transition rules provide
each triangle with global constraints to change. In turn, these global constraints
can enable local inferences about the evolution of a region being monitored. The
following section provides examples of four different transition rules.

5.1 Example transition rules

Four possible transition rules are considered in this section. Other transition rules
might also be devised; the four transition rules in this section are chosen simply
to illustrate the utility of the approach. These transition rules are combinations
of either constraining or not constraining insertions and deletions to occur only
at the boundary, and subject to preserving or not preserving regularity (see
table 1). All four transition rules assume incremental change and so lead to
continuously evolving triangulation in the sense of definition 9.

Boundary
change

General
change

Regularity
preserving

Transition
rule A

Transition
rule B

General Transition
rule C

Transition
rule D

Table 1. Classification of the four transition rules

We may summarize the general form of the transition rules in terms of a
simple finite state automaton for an individual triangle δ ∈ ∆ (figure 6). A
triangle δ is either in a region R (state q1) or not (state q0). The transition rules
define the conditions under which a triangle may be added or deleted from the
region. The state of the region is defined by summing over the combined state
of all the triangles δ ∈ ∆ that are in the region at any point in time.

Unlike a conventional cellular automata, one of the conditions that governs
insertion or deletion of triangles from a region changes is the underlying state of
the field being monitored (i.e., whether or not the environmental phenomenon
has been detected within the triangle).

Transition rule A: Boundary change to regular R preserving regularity

Insertion conditions: δ ∈ ∆\R will be inserted into R to produce R′ if:

1. The monitored phenomenon is detected in δ;
2. δ is edge-adjacent to one or two existing boundary triangles of R; and
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q1

q0

insertion

conditions

deletion

conditions

Fig. 6. Transition rules define changes of state between triangle δ ∈ ∆ being in (q1) or
out (q0) of region R ∈ R(∆)

3. each vertex of δ that is a boundary vertex of R′ is incident with exactly two
boundary edges in R′.

Deletion conditions: δ ∈ R will be deleted from R to produce R′ if:

1. The monitored phenomenon is not detected in δ;
2. δ is a boundary triangle of R; and
3. each vertex of δ that is also a vertex of R′ is incident with exactly two

boundary edges in R′.

Transition rule B: Change to regular R preserving regularity

Insertion conditions: δ ∈ ∆\R will be inserted into R to produce R′ if:

1. The monitored phenomenon is detected in δ; and
2. each vertex of δ is incident with exactly zero or two boundary edges of R′.

Deletion conditions: δ ∈ R will be deleted from R to produce R′ if:

1. The monitored phenomenon is not detected in δ; and
2. each vertex of δ that is also a vertex of R′ is incident with exactly two

boundary edges in R′.

Transition rule C: Unconstrained boundary change to R

Insertion conditions: δ ∈ ∆\R will be inserted into R if:

1. The monitored phenomenon is detected in δ; and
2. δ is edge-adjacent to at least one existing boundary triangle of R.

Deletion conditions: δ ∈ R will be deleted from R if:

1. The monitored phenomenon is not detected in δ; and
2. δ is a boundary triangle of R.

Transition rule D: Unconstrained change to R

Insertion condition: δ ∈ ∆\R will be inserted into R if:
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1. The monitored phenomenon is detected in δ.

Deletion condition: δ ∈ R will be deleted from R if:

1. The monitored phenomenon is not detected in δ.

Figure 7 graphically summarizes the transition rules, by depicting some of the
allowable changes to an example regular simply connected region for transition
rules A–D.

In
s
e

rt
io

n
D

e
le

ti
o

n

A, B, C, DA, B, C, DB, DD C, D

Fig. 7. Example allowable changes to simply connected region for transition rules A–D

Note that the transition rules are purely local to δ, the putative triangle
for insertion or deletion. Thus, the transition rules potentially can provide a
computationally efficient mechanism for keeping track of the connectedness of
a region. For example, suppose that the state of a region R(t) is known to be
regular simply connected. For a time t′′ where t < t′′, if we know that for all
t′ such that t < t′ < t′′, 1) R(t′) is always regular, and 2) R(t′) has evolved
through the application of only transition rules A and/or C, then it follows
that R(t′′) is connected. Since maintenance of regularity can be checked using
local conditions (see definition 8) and the transition rules themselves are purely
local, such inferences may be an efficient way of determining whether a region
is connected without the need to recompute connectivity.

Clearly, such inferences have direct application to efficient querying of geosen-
sor networks, and related work is ongoing of the algorithms for detecting change
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in the context of geosensor networks (see section 7.1). Recall that connectivity is
a property that is not locally computable (section 4.2). Potentially connectivity
could be computed using standard graph-based algorithms, like a depth first
search of the dual graph of the triangulation. Such algorithms are not especially
computationally expensive (e.g., optimal time complexity for depth first search
is O(|V |+ |E|) where |V | is the number of vertices and |E| the number of edges
in the in the triangulation). However, depth first search relies on exploring the
entire triangulation, a very costly operation in the context of geosensor networks
where communication is one of the most battery-draining operations for a sensor.

5.2 Conceptual neighborhoods

For each of the four transition rules A–D, we can summarize the possible changes
in a non-empty dynamic region using a conceptual neighborhood diagram (see
Freksa, 1991). In such a structure, two states are conceptual neighbors if it is
possible to pass from one to the other, by whatever transformations are un-
der consideration, without passing through any intervening states. The nodes of
each conceptual neighborhood diagram represent jointly exhaustive and pairwise
disjoint possible states for a dynamic region, based on its regularity and con-
nectedness properties. The connections in the conceptual neighborhood diagram
represent the possible transitions for a dynamic region.

The conceptual neighborhood diagrams resulting from the different transition
rules contain six possible states: not regular and not connected; regular and not
connected; not regular and weakly connected; regular and simply (and strongly)
connected; not regular and strongly connected; and regular and strongly (but
not simply) connected regions. In the underlying field the distinction between
some of these states, such as weak connection and strong connection, may not be
especially salient. However, as we shall see, distinguishing between these states
in the discrete region is useful as it enables different region transitions to be
discerned apart.

The conceptual neighborhood diagram for transition rule A is shown in figure
8. Region transitions between the six states using transition rule A are not pos-
sible, so the conceptual neighborhood diagram for transition rule A is somewhat
trivial and is included for completeness only.

Regular
Not connected

Regular
Simply

connected

Regular
Strongly

connected

Not regular
Strongly

connected

Not regular
Weakly

connected

Not regular
Not connected

Fig. 8. Conceptual neighborhood diagram for transition rule A
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The conceptual neighborhood diagram for transition rule B contains two
region transitions: between regular, simply connected regions and regular, dis-
connected regions; and between regular, simply connected regions and regular,
strongly connected regions (figure 9).

Regular
Not connected

Regular
Simply

connected

Regular
Strongly

connected

Not regular
Strongly

connected

Not regular
Weakly

connected

Not regular
Not connected

Fig. 9. Conceptual neighborhood diagram for transition rule B

The conceptual neighborhood diagram for transition rule C introduces several
new transitions (figure 10). In particular, note that two region transitions are
unidirectional: from regular, strongly connected to regular, simply connected and
from regular, not connected to regular, simply connected. For example, changes
at the boundary of a region can lead to a hole being closed up, but cannot
create a hole in a regular, simply connected region without first going through
an intermediate irregular (and strongly connected) stage.

Regular
Not connected

Regular
Simply

connected

Regular
Strongly

connected

Not regular
Strongly

connected

Not regular
Weakly

connected

Not regular
Not connected

Fig. 10. Conceptual neighborhood diagram for transition rule C

Finally, the conceptual neighborhood diagram for transition rule D enables
almost all transitions to take place (figure 11). Although transition rule D repre-
sents our most unconstrained situation, there still remain some transitions that
are not possible in a single step (such as regular, not connected to not regular,
strongly connected).

Aside from providing concise pictorial summaries of the possible transitions
for each transition rule, the conceptual neighborhood diagrams illustrate the
range of different dynamic behaviors that can be achieved even with our rela-
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Regular
Not connected

Regular
Simply

connected

Regular
Strongly

connected

Not regular
Strongly

connected

Not regular
Weakly

connected

Not regular
Not connected

Fig. 11. Conceptual neighborhood diagram for transition rule D

tively simple formal model. As highlighted previously, an important aspect of
our approach is that many of the transitions summarized in figures 1-4 can be
detected using local rules. For example, transitions from regular to not regular
simply require that some node be incident with more than two boundary edges,
a condition that can be tested locally. As described previously, this knowledge
can be used as the basis for efficient automated inferences about properties, such
as connectedness, which may not be detectable using local algorithms.

6 Detecting events in dynamic regions

We now show how the formal model developed in this paper can be used to
detect salient events in dynamic regions. A dynamic region is modeled as an
ST scalar field f : S × T → D (see section 4). In this section the domain D is
simply the set {0, 1}. At any point in time t, we can assign each element δ of
our triangulation ∆ to a region R if some part of δ maps to the domain value 1
at that time, i.e., for all δ ∈ ∆, δ ∈ R if and only if there exists some p ∈ S such
that δ contains p and f(p, t) = 1.

In addition, when detecting changes in dynamic regions we may stipulate
that, for the time interval under consideration, the evolution of R conforms to
one of the transition rules defined in the previous section. Conforming with a
particular transition rule requires that the dynamic region must be initialized
in one of the valid states in that transition rule (shown in the conceptual neigh-
borhood, section 5.2), and that all changes to the region are be performed in
accordance with the triangle insertion and deletion methods for that transition
rule (section 5). The following examples show how applying different transition
rules enables different types of event to be detected.

6.1 Detection of movement and expansion

Applying transition rule A enables movement, stasis, expansion, and contraction
to be modeled and detected. To recapitulate, these rules assume the initial region
R is regular and only additions and deletions that result in regular regions are
allowed. For example, figure 12 shows a sequence of stages from the development
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of a dynamic region. The region is shown as the circular shape in figure 12, while
the set of triangles where the region has been detected at a particular time is
shown using shading.

Movement Expansion

t
1

t
2

t
3

ContractionMovement

Fig. 12. Some events using boundary-regular transition rules

For any two times t and t′ we define expansion as the event where R(t) ⊂
R(t′) and t < t′. Conversely, contraction is defined as the event where R(t) ⊂
R(t′) and t > t′. Appearance and disappearance can be defined of as special
cases of expansion and contraction where R(t) = ∅. Stasis is defined as the
event where R(t) = R(t′). Movement is defined as any transition between R(t)
and R(t′) that is not expansion, contraction, or stasis. Thus on figure 12 the
transitions between successive stages of development have been labeled with the
corresponding events.

Note that in the definitions above the time intervals t and t′ do not need to
be consecutive times at the finest temporal granularity available in our model.
In figure 12, several intervening time steps have been omitted (between t1 and t2
and between t2 and t3). Using the definitions above, the size of the time interval
chosen may determine what events are observed. At a coarser time interval the
changes between t1 and t3 can be viewed simply as an expansion. Similarly, look-
ing at time sub-intervals, such as changes that occurred between t1 and t2, may
reveal different events. Thus, a more restrictive definition of strong expansion
for two times t and t′ would be as the event R(u) ⊂ R(u′) for all u, u′ where
t ≤ u < u′ ≤ t′ (and similarly for strong contraction).
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6.2 Detection of hole formation

Hole formation can be detected using transition rule B. Figure 13 shows an
example of the detection of hole formation. Hole formation is defined as a change
from a regular, simply connected region (at t1) to a regular, connected region (at
t2). Hole disappearance is detected as the converse change. Note that the region
may also be moving, expanding, or contracting without affecting the mechanism
for detecting hole formation. In a similar way we could use transition rule B
to detect the formation or disappearance of disconnected islands, occurring as a
change from a regular, simply connected region to a regular, disconnected region.

Hole formation

t
1

t
2

Hole disappearance

Fig. 13. Hole formation using general-regular transition rules

6.3 Detection of splitting

In order to detect splitting we need to use transition rule C. Recall that tran-
sition rule C allows the addition and removal of new triangles at the boundary
of R irrespective of regularity. The development of a “pinch point” in figure 13
shows the process of splitting, defined as a change from a regular, connected
to an irregular, weakly connected region. Splitting may be followed by disag-
gregation, defined as a change from an irregular, weakly connected to a regular,
disconnected region. The converse processes of aggregation and merging can also
be defined in a similar way.

6.4 Transition rule properties

Previous sections have illustrated how different transition rules can be used to
detect different spatial events. Events can only be detected using the transition
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Fig. 14. Splitting and merging using boundary transition rules

rules for which they are defined. For example, even if the underlying continuous
phenomena splits, this will not be detected using a region evolving through the
application of transition rule A. Figure 15 shows the results of using transition
rule A in such a situation. Because the transition rule A disallows transitions to
irregular regions, the region in figure 15 will never reach the pinch point in 14.
Further, since only boundary changes are permitted using transition rule A, the
region can never progress directly to the regular, disconnected region (although
this would be permitted using the transition rule B, for example).

Thus, at each time step we may ask for a particular transition rule, what
proportion of the triangles in a dynamic region contain some part of the un-
derlying dynamic field (i.e., errors of commission) or what proportion of the
triangles in the triangulation that contain some part of the underlying dynamic
field are part of the dynamic region (i.e., errors of omission). These proportions
provide measures of the veracity of a particular transition rule. For phenomena
that yield many splitting, hole, and island formation events, for example, we ex-
pect transition rule A to result in lower veracity (higher errors of omission and
commission) than, say, transition rule D (see section 6.6 for further analysis).

Although some transition rules may provide less veracious representations
of the underlying dynamic region they may also provide more useful inferences.
For example, for a dynamic region based on transition rule C that was known
to be connected at time t and has remained regular to a subsequent time t′, we
can infer that the R must still be connected at time t′ (as discussed in previous
sections, transition rule C prevents disconnection without an intermediate stage
of irregularity). The same inference does not hold for transition rules B or D.
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Fig. 15. Inability to detect splitting and merging using boundary-regular transition
rules

6.5 Spatial and temporal granularity

In all the figures in this section, the triangulations have been somewhat exag-
gerated for clarity. In general we envisage triangulation frameworks that are
much more dense, relative to the extent of the dynamic region under study.
Thus, the triangulation mesh would be much finer and the edge effects visible in
figures 12–15 would be minimized. This coarse spatial granularity is also asso-
ciated with coarse temporal granularity in detecting events. For example, figure
14 contains significant spatial imprecision and associated edge effects. The ex-
ample illustrates the detection of splitting in the underling dynamic region, but
as a consequence of the coarse spatial granularity the splitting event is detected
some time after the underlying dynamic regions have in actuality split. These
“temporal edge effects” would also be greatly reduced by using a triangulation
framework at a much finer spatial granularity.

6.6 Simulation

To empirically explore transition rule properties a simulation system was written
in Java, in which the different transition rules were implemented tested against a
variety of scenarios. One example scenario, which encapsulates several different
types of dynamic events, is illustrated in Figure 16. The figure summarizes the
following changes that occur to a dynamic field, f : T → S → {0, 1} (where the
oval region with the thick boundary indicates the initial state of the field at time
t0):

1. Hole appears in region
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2. Hole in region grows
3. Region bursts (hole meets exterior of region)
4. New disconnected part of region appears
5. Disconnected part of region grows
6. Region merges
7. Region splits

1

2

3

4

5

6

7

Fig. 16. Example dynamic field scenario

The simulation system allows the veracity of the transition rules to be tracked
across the different events that occur. Figure 17 shows the levels of errors or
omission and commission for each transition rule. The level of error is shown
on the ordinate of each graph with time on the abscissa. The events from the
example scenario above are also marked on each figure. The error levels are
averaged over multiple simulation (10 runs) and a moving average was used to
filter out fine detail and highlight the general trends.

The different graphs provide a “fingerprint” of events for each transition rule.
For example, for transition rule A (Figure 17a, event 1), hole appearance cannot
be detected and as a result, errors of commission increase as the hole grows
(Figure 17a, event 2). Once the region “bursts” the changes can be detected at
the boundary of the region, and errors of commission rapidly decrease (Figure
17a, event 3). Similarly, the appearance of new parts cannot be detected with
transition rule A, so errors of omission increase as the new disconnected part
of the region appears and grows (Figure 17a, events 4–5). Merging returns the
region to a connected whole, reducing errors of omission (Figure 17a, event 6),
followed by increasing errors of commission corresponding to the undetected
splitting (Figure 17a, event 7).

Transition rule C (Figure 17c) follows a very similar pattern to transition rule
A, except that the region splitting can be detected, so no errors of commission
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b. Transition rule B
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c. Transition rule C
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d. Transition rule D
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Fig. 17. Veracity of transition rules for example scenario in Figure 16

are associated with this event (Figure 17c, event 7). Transition rule B does
adequately detect the hole formation (Figure 17b, events 1–2), but cannot detect
the region bursting, leading to errors of commission following this event (Figure
17b, event 3). The merging and splitting events are not detected, leading to
brief increases in the errors of omission and commission respectively (Figure 17b,
events 6–7). As expected, the errors of omission and commission for transition
rule D are very low for all events, and represent a control case for the data
(these errors occur because of a slight delay in the simulation between an event
occurring and the event being detected).

A variety of other scenarios and transition rule properties have been inves-
tigated using the simulation system. At this stage, these simulations are useful
for guiding the formal model development. However, in future work further sim-
ulations are planned in the context of geosensor network application with both
simulated and real field data.
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7 Discussion and conclusion

This paper has set out a formal framework for modeling continuous spatial
change in an event-oriented discrete spatiotemporal framework, and shown how
this framework can be used for detecting spatial events, such as splitting, merg-
ing, movement, stasis, and hole formation and disappearance. The significance
of this approach is that it provides a mechanism for the explicit representation
of qualitative spatial events based on snapshot data, such as is generated by
conventional sensor-based systems.

This paper provides a computational model for defining and detecting spa-
tiotemporal events for a single region. The approach is being extended to spa-
tial events involving multiple regions. There are a several options for achiev-
ing this. One option is for two non-empty dynamic regions R1,R2 ∈ R(∆) is
to consider the relationships between the dynamic region of overlap between
regions at a particular time. We can then define for the two regions corre-
spondences between this region of overlap and RCC8 or RCC5 (for example,
DR(R1(t),R2(t)) ≡ R1(t) ∩ R2(t) = ∅ and ∀v ∈ δR1(t).v 6∈ δR2(t) where R(t)
is the extent of R at time t). Again, based on these relations we can derive the
conceptual neighborhood for the region transitions, in turn using these to define
events in the evolution of pairs of regions.

Other future work already highlighted in this paper includes:

– extensions for modeling continuous but not incremental evolution of regions;
– extensions for modeling uncertainty in regions, where it may be indetermi-

nate whether or not a triangle is in a region, or uncertain to what extent a
triangle is within a region; and

– further simulations, with both simulated and real field data.

While this paper has focused primarily on formal foundations, we end with
a brief discussion of the target application area for our approach: geosensor net-
works. This application area has already been highlighted as important (section
2.2), and motivates several further directions for future research that are cur-
rently being investigated.

7.1 Geosensor network application

Section 1.1 introduced the example application of using a geosensor network
for monitoring the dynamic spatial evolution of an oil slick. Such a geosensor
network may be modeled as a triangulation in our formal model. If the abso-
lute spatial location of each geosensor is known, for example using GPS, then
this information may be used to triangulate continuous space. However, even
where GPS information is unavailable (perhaps due to power constraints) other
localization techniques may be used to derive the required qualitative spatial
information to build the combinatorial map (such as acoustic range and direc-
tion finding, e.g., Chen et al., 2003). Triangles in the triangulation are bounded
by three vertices (geosensors), with edges connecting pairs of geosensors. (Al-
ternatively, it would also be possible to model each geosensor as a triangle in
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our triangulation framework, with adjacency relationships to three other geosen-
sors.) Each geosensor gathers information about the presence or absence of the
oil slick in its immediate vicinity. Using this information, in combination with
the dynamic triangulation transition rules described earlier, each geosensor could
determine at a particular point in time whether the cells it bounds are part of
a dynamic triangulation. In this way, the continuous movement of the oil slick
could be tracked and spatial events detected.

Our triangulations may be envisaged as an additional “layer” in the geosen-
sor network architecture, superimposed on top of the underlying communication
network topology. However, current work is addressing the precise relationship
between the communication network topology and the triangulation itself. While
the model presented in this paper assumes a triangulation of the plane, it would
be possible to generalize our formal model to allow any planar tessellation, not
only triangulations, to be used as a spatial framework. Several of the major
routing algorithms for geosensor networks (and mobile ad-hoc networks in gen-
eral) generate network topologies that are planar graphs (e.g., Karp and Kung,
2000). Thus, it may be possible to integrate the communication network with
the triangulation itself.

The information generated by the geosensors could be transmitted wirelessly
to a central information processing system, using standard multi-hop commu-
nication transition rules (see Murthy and Manoj, 2004). However, the dynamic
triangulation transition rules and the rules for detection of events are primarily
local, and relate to changes in the neighborhood of a single triangle or geosen-
sor. Current work is addressing the specification of in-network query algorithms,
where spatial events are detected using local rules without the need for any cen-
tralized information processing or for queries that flood the entire geosensor
network (Duckham et al., 2005).

Finally, the oil slick scenario assumes the geosensors are stationary and al-
ways switched on. In real geosensor networks sensors may be mobile, perhaps
carried by wind or ocean currents, may switch themselves on or off, and may
be added or removed from the network. Initial work to investigate the situa-
tion where nodes can become active or inactive within a static triangulation
framework has already begun (Duckham et al., 2005). Planned research will
also relax the assumption of a static spatial framework, using recent research
into process-oriented approaches to geographic information as a basis (Worboys,
2005). Although the approach and formalism in this paper is different from the
process algebra used in Worboys (2005), current work by the authors is aiming
to integrate these two approaches (for example by encoding our four dynamic
triangulation transition rules within a process algebra).
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