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Representation and reasoning about dynamic spatial phenomena requires at its foundation
a formalism of spatial change. This paper extends our understanding of topological change,
by providing a classification and analysis of events associated with changes in topological
structures of spatial areal objects as they evolve through time. Tree structures are employed
to represent topological relationships between regions and holes of areal objects. Basic and
complex changes are specified using structure-preserving mappings between trees. Further, the
paper constructs a normal form, and proves that it is the ‘simplest’ form that can represent
all the changes under consideration.
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1. Introduction

With the rapid development and deployment of data acquisition technology, huge
amounts of data have been collected in environmental domains, such as oceanog-
raphy, and meteorology (GoMOOS 2002, WDSS-II 2000). These temporally and
spatially referenced data provide a low-level basis for describing the dynamic world,
and are important to those who are interested in investigating and predicting the
underlying events in these domains. Traditional approaches organize such data in
information systems according to their spatial and temporal attributes (Güting
et al. 2003, Abraham and Roddick 1999). Queries are constrained to retrieve data
only if the time and space of interest is explicitly stated, and it is therefore difficult
to extract relevant information when this information is not explicitly provided.

In the case of dynamic environmental phenomena, users are often interested in
the data associated with events. It is therefore useful for information systems to
support queries based on properties of events, along with their spatial and temporal
attributes. This suggests that in our conceptual and data models, occurrent objects
(events) should be given the same ontological status as continuant objects (things)
(Worboys 2005). In other words, we should first abstract the data into the higher-
level data type, event, then represent events according to various event properties
and relationships, and finally support query manipulation and integration of the
raw data in terms of events.

To enable such an event-oriented approach, one of the crucial tasks is to specify
and distinguish different kinds of spatial events. Changes in the topological struc-
ture of regions, such as changes regarding holes, are an important aspect of spatial
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Figure 1. Consecutive snapshots of sea surface height

events. We call events specified according to the changes in topological structure
topological events.

Consider the following examples of topological events from the domain of meteo-
rology. Figure 1 shows eight consecutive snapshots of ocean areas with sea surface
height(SSH) below a threshold (-15 cm) at the beginning of the onslaught of El
Niño (Shirah 1997). It is easy to identify several changes in topological structure
during this period, including:

(1) Within the area indicated by an ellipse, between t0 and t1, two regions
appear. Between t1 and t2, a region merges with itself and forms a hole, and
between t2 and t7, the hole is merged back to the exterior.
(2) Within the area indicated by a rectangle, between t0 and t2, a new re-
gion appears. Between t2 and t4, another new region appears. Between t4 and
t6, three regions merge together. Finally, between t6 and t7, a third region
appears.

This paper focuses on classification and analysis of different kinds of topological
events. Our approach is to take each temporal snapshot (Galton 2004) of the phe-
nomenon, and abstract from it the structure of areal objects associated with the
event at that time. This structure is formally modeled as a tree. In this way, spa-
tial events are represented by changes in the region structure, modeled by changes



(morphisms) of the tree. The main result of our work is that each complex topo-
logical event can be expressed as a composition of basic changes, structured as a
normal form.

The paper is organized as follows. In section 2 we discuss work related to the
event-based approach for modeling dynamic phenomena. In section 3, we define
basic and complex changes, represent them by means of trees and tree morphisms,
and use these to analyze the equivalent topological changes. Section 4 presents a
normal form for the complex changes, and proves that every change is equivalent
to a change expressed using the normal form. Section 5 shows the properties that
a normal form must have. Finally, in section 6 we draw conclusions and discuss
future research directions.

2. Background

In this section we provide a background to research on modeling dynamic phe-
nomena. Abraham and Roddick (1999) give a good survey of early work on spatio-
temporal information systems. In most approaches, the occurrents (events, changes,
and other dynamic happenings) are represented implicitly. More recently, there is
an increasing interest in representing occurrents explicitly, and upgrading them
to an equal status with continuant objects. Grenon and Smith (2004) in their
SPAN ontology define occurrents to be entities which unfold themselves through
time in their successive temporal parts. Worboys and Hornsby (2004) emphasize
the similarities between events and objects in data models, and propose a unified
modeling approach for both events and objects. Worboys (2005) presents a pure
event oriented model, in which real-world happenings are represented using alge-
braic approaches. Galton (2004) points out that there is not a clean separation
between (spatial) objects and (temporal) events, since in the real world we can
find many phenomena (e.g., storms, floods), which are not easy to fit into a simple
object/event dichotomy.

Some research has focused on exploring and categorizing different kinds of events
or changes. Based on three basic components of geo-objects identified by Armstrong
(1988), eight change scenarios are proposed by Roshannejad and Kainz (1995), in-
cluding change in geometry, change in topology, change in attribute, change in
topology and attribute, change in attribute and geometry, change in geometry and
topology, change in geometry, topology and attribute, and no change. Hornsby and
Egenhofer (2000) present research on specifying identification-based change. They
systematically analyze change with respect to states of existence and nonexistence
for identifiable objects. Claramunt (1995) analyzes possible changes that can take
place in entities and categorizes them into three different classes: evolution con-
cerning a single entity, evolution in the functional relations between several entities,
and evolution in spatial structure involving several entities. Renolen (2000) defines
seven types of change: creation, alteration, destruction, reincarnation, split, merge,
and reallocation.

Besides defining and classifying change in general, some work has focused on
event-based modeling in specific domains. Galton and Worboys (2005) discuss the
ontological categories of events and states in dynamic geo-networks (accidents,
flows, etc.), and possible kinds of causal relations between events. Cole and Hornsby
(2005) identify and model some significant occurrents in a harbor as noteworthy
events.

Another research direction related to topological change is the analysis of transi-
tion between binary topological relations. Examples of this work include (Randell
et al. 1992, Egenhofer and Al-Taha 1992). Research in this direction aims at build-



ing conceptual neighborhood graphs (or transition graphs) in order to describe
all direct transitions between certain kinds of binary topological relation during
the continuous change of two spatial objects. This research has similarities to our
work; however, study of transitions between topological relations is different from
the study of changes in topological structure. In the former, the emphasis is on
exploring the constraints that continuity imposes on transitions between binary
topological relationships. In our work, the topological structure of spatial objects
is more complex, for example allowing objects to have holes, and our analysis
focuses on changes in the structure of such complex objects.

3. Basic and complex topological changes

This paper discusses the topological characterization of changes to areal objects
as they evolve through time. We assume that the areal objects are embedded in a
2-dimensional spatial domain, and the evolution is continuous (no sudden jumps).
We do not assume that the areal object is simply connected (so it may have holes),
or even connected (so it may have several disconnected components). A rooted
tree model is presented to model the topological structure of areal objects at a
snapshot in time. As the areal object evolves through time, the corresponding tree
will change. We will use changes to the tree to represent changes to the areal
object. In this section, we first show that the components of an areal object form a
hierarchy that can be represented by a tree. Then we review formal definitions of
trees and tree morphisms, and lastly use them to specify different kinds of changes.

3.1. Areal object and tree representation

Definition 1 An areal object is a set of points R in 2-dimensional space with the
following properties:

(1) R is regular closed, that is the closure of the interior of R is R (Schneider
and Behr 2006).
(2) R is bounded, that is R is contained in the ‘inside’ of a Jordan curve (Fulton
1995) in the spatial domain.
(3) Both R and its complement have a finite number of connected components.

Given an areal object R, connected components of R are said to be its positive
components and connected components of the complement of R are said to be
its negative components. Both positive and negative components are referred to as
components. In this work, we are not concerned with the boundaries of components.
We note that components of an areal object form a partition of the whole space. An
areal object must have one and may have more than one positive component as well
as more than one negative component, and both positive and negative components
may have holes. As an example, Figure 2(a) shows an areal object, whose positive
and negative components are represented by the shaded areas in Figure 2(b) and
2(c), respectively. In the figure, the outer rectangles represent the extent of the
spatial domain.

We are concerned with the ‘surrounded by’ relation between components. For
example, in Figure 2(a), components 3 and 4 are surrounded by component 2.
Components 2,3 and 4 are surrounded by component 1. Components 1,2,3 and 4
are surrounded by component 0. The ‘surrounded by’ relation satisfies the following
properties, mentioned in (Bittner and Donnelly 2007):

(1) Transitivity: for any components C1, C2, and C3, whenever C1 is surrounded
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Figure 2. An example of tree representation of components

by C2, and C2 is surrounded by C3, we have C1 is surrounded by C3.
(2) Asymmetry: for any components C1 and C2, if C1 is surrounded by C2,
then C2 cannot be surrounded by C1.
(3) The root property: there is one and only one component C such that all
the other components are surrounded by C.
(4) No-partial-overlap: for any different components C1 and C2 surrounding
the same component, it holds that either C1 is surrounded by C2, or C2 is
surrounded by C1.

According to these properties, rooted tree structures are employed to represent
the ‘surrounded by’ relation between all the components (Worboys and Bofakos
1993). A rooted tree is a special type of directed tree, in which edges have a natural
orientation (being away from the root). In the rooted tree, each vertex represents
a component, and the direct descendants of each vertex represent the components
that are immediately surrounded by the component it represents. A component C1

is surrounded by a component C2 if and only if there is a directed path from the
vertex representing C2 to the vertex representing C1. Figure 2(d) shows such a tree
representation of the areal object in Figure 2(a). The root of the tree is doubly
circled and directions of edges are indicated by arrows.

3.2. Basic definitions

The following gives the formal definitions that relate to the notations of tree and
tree morphism. Note: in this and the following sections, trees are always rooted
trees.

Definition 2 A graph G is a pair 〈V,E〉, where V is the set of vertices in the
graph, and E is a set of subsets of V representing the edges of the graph. Each
element in E has the form {v1, v2}, where v1 and v2 are different vertices in V .

Definition 3 In a graph G = 〈V,E〉, a path is a sequence of vertices of the form:

[v1, v2, ...vk−1, vk]

where vi ∈ V for i = 1, 2, ..., k, and {vi, vi+1} ∈ E for i = 1, 2, ..., k − 1.
A path is defined to be simple, if ∀i, j ∈ {1, 2, ..., k}, i �= j implies vi �= vj .
A cycle is defined to be a path [v1, v2, ...vk−1, vk] such that v1 = vk. A cycle is

defined to be simple, if ∀i, j ∈ {1, 2, ..., k − 1}, i �= j implies vi �= vj.

We will use V (G), E(G) to represent the set of vertices and edges of the graph
G respectively. We say vertices v1 and v2 are adjacent in G, if {v1, v2} ∈ E(G).

Definition 4 A graph morphism from a graph G1 to a graph G2 is a function
ϕ : V (G1) → V (G2) such that for all vi,vj ∈ V (G1), ϕ(vi) and ϕ(vj) are adjacent
in G2 whenever vi and vj are adjacent in G1.

Definition 5 A tree T is defined to be a graph with the properties that:



(1) For all different vertices v1, v2, there is one and only one simple path in T
that connects v1 and v2.
(2) There is a distinguished vertex r called the root of the tree.

To emphasize the root of the tree, we will use a triple 〈V,E, r〉 to represent a
tree.

Definition 6 Given two trees T1 = 〈V1, E1, r1〉 and T2 = 〈V2, E2, r2〉, a tree mor-
phism ϕ from T1 to T2 is defined to be the graph morphism ϕ from T1 to T2, with
an additional requirement that ϕ(r1) = r2.

A tree morphism is injective if and only if ϕ is an injective function; i.e. distinct
vertices of T1 are mapped to distinct vertices of T2 through ϕ. A tree morphism is
surjective if and only if ϕ is a surjective function; i.e. every vertex of T2 is mapped
onto by at least one vertex of T1 through ϕ. A tree morphism is an isomorphism,
if and only if it is both an injective and a surjective tree morphism.

3.3. Basic topological changes

Topological changes occur when components appear, disappear, merge, split, etc.
All of these topological changes have correspondences to changes in the tree struc-
ture. Our first step is to define some basic changes of the tree structure, from which
all the changes of interest can be constructed.

Suppose T1 and T2 are trees representing the topological structures of an areal
object at time t1 and t2 (t1 < t2). A basic change is denoted by the expression
‘T1

γ��� T2’, where γ is the change, and can be represented by a single morphism ϕ,
either from T1 to T2 or from T2 to T1. Five types of basic change can be specified
according to the properties of the tree morphisms between T1 and T2.

Definition 7 A basic change T1
γ��� T2 is one of the following types:

(1) T1
γ��� T2 is of type insert, if the effect of the change can be represented

by an injective but not surjective tree morphism ϕ from T1 to T2.
(2) T1

γ��� T2 is of type merge, if the effect of the change can be represented
by a surjective but not injective tree morphism ϕ from T1 to T2.
(3) T1

γ��� T2 is of type delete, if the effect of the change can be represented
by an injective but not surjective tree morphism ϕ from T2 to T1.
(4) T1

γ��� T2 is of type split, if the effect of the change can be represented by
a surjective but not injective tree morphism ϕ from T2 to T1.
(5) T1

γ��� T2 is of type no change, if the effect of the change can be represented
by a tree isomorphism ϕ from T1 to T2.
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Figure 3. Representation of different topological changes

As an example, Figure 3 shows representations of a basic split and a basic insert



between times t1 and t2. The dashed arrows show the direction of changes, and
solid arrows between vertices show the morphisms. Both representations indicate
different ways that the topological structure of an areal object changes. A change
modeled by the basic split is shown in Figure 4(A), in which component 2 evolves
its shape to engulf a new component 3. A change modeled by the basic insert is
shown in Figure 4(B), in which component 3 arises differently, this time emerging
and growing inside component 2.
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Figure 4. Two different topological changes

3.4. Complex topological changes

As an areal object evolves through time, a sequence of basic changes is established.
We define a sequence of basic changes to be a complex change. The definition is as
follows:

Definition 8 A complex change from T0 to Tn is of the form

T0
γ0��� T1

γ1��� T2
γ2��� ...Ti

γi��� ...
γn−2��� Tn−1

γn−1��� Tn

in which each Ti
γi��� Ti+1 (0 ≤ i ≤ n − 1) represents a basic change from Ti to

Ti+1.

For simplicity, in representations we omit the no change events within a complex
change. If there is a no change event from Ti to Ti+1, both Ti and Ti+1 have the
same structure. Therefore the basic change starting from Ti+1 can be replaced
by a change that starts from Ti. In this way, the no change event together with
the tree Ti+1 are omitted. For example, consider the case shown in Figure 1. We
define the selected locations in the ellipse area and the rectangle area to be areal
objects R1 and R2 respectively. The evolution of R1 and R2 can be represented
by complex changes C1 and C2 as shown in Figures 5(a) and 5(b) respectively. In
complex change C1 we omit the no change events starting from T2, T3, T4, and T5.
In complex change C2 we omit the no change events starting from T0, T2, and T4.

A basic issue is to define the notion of equivalence of complex changes. For
example, Figure 6 shows two equivalent complex changes. Both changes result in
a new component denoted by vertex 5. Vertices 1 and 4 in the final state originate
from vertex 1 in the original state, and vertex 6 in the final state originates from
vertices 2 and 3 in the original state.
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Figure 5. Complex representation of the areal objects in Figure 1
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Figure 6. Two equivalent complex changes

The following definitions formalize our intuitions about equivalent complex
changes in terms of trees and tree morphisms.

Definition 9 Let C be a basic change T1
γ��� T2 specified by a morphism ϕ. C

induces a transform-to relation R ⊂ V (T1) × V (T2) such that ∀v1 ∈ V (T1), v2 ∈
V (T2), (v1, v2) ∈ R if and only if either ϕ(v1) = v2 or ϕ(v2) = v1.



Definition 10 Let C be a complex change from T0 to Tn:

T0
γ0��� T1

γ1��� T2
γ2��� ...Ti

γi��� ...
γn−2��� Tn−1

γn−1��� Tn,

and let Rk(0 ≤ k ≤ n − 1) denote the transform-to relation induced by the basic
change from Tk to Tk+1.

(1) For any 0 ≤ i ≤ n− 1, the future of v ∈ V (Ti) from stage i is defined to be
F (v, i) = {w ∈ V (Tn)|(v,w) ∈ Ri ◦ Ri+1 ◦ ... ◦ Rn−1}. The future of v ∈ V (Tn)
from stage n is defined to be F (v, n) = {v}.
(2) For any 1 ≤ i ≤ n, the past of v ∈ V (Ti) from stage i is defined to
be P (v, i) = {w ∈ V (T0)|(w, v) ∈ R0 ◦ R1 ◦ ... ◦ Ri−1}. The past of v ∈ V (T0)
from stage 0 is defined to be P (v, 0) = {v}.
(3) The set of essential insertions of C is defined to be I(C) =
{(v, i)|i ∈ {1, 2, ..., n} ∧ v ∈ V (Ti) ∧ F (v, i) �= ∅ ∧ P (v, i) = ∅}.

In definition 10, the future of a vertex v is the set of vertices in the final state to
which v transforms. The past of v is the set of vertices in the initial state which
transform to v. An essential insertion (v, i) refers to a vertex v at stage i that is
introduced by a basic insert, and which transforms to some vertices in the final
state.

Two changes are defined to be equivalent if and only if both changes start from
the same tree T0, end at the same tree Tn, have the same set of essential insertions
I, and have the same transform-to relation, characterized by the future functions,
from the vertices of T0 and I to the vertices of Tn. The formal definition is given
as follows:

Definition 11 Let C and C
′
be two changes from T0 to Tn, and from T

′
0 to T

′
n,

respectively. Let F and F ′ be the future functions of C and C
′
. Let I(C) and I(C

′
)

be the essential insertion sets of C and C
′
.

C is defined to be equivalent to C
′
if and only if there is a tree isomorphism ϕ0

from V (T0) to V (T
′
0), a tree isomorphism ϕn from V (Tn) to V (T

′
n), and a bijective

function f from I(C) to I(C
′
) such that,

(1) ∀v ∈ V (T0), ϕn(F (v, 0)) = F ′(ϕ0(v), 0), and
(2) ∀(v, i) ∈ I(C), ϕn(F (v, i)) = F ′(f(v, i)).

4. The normal form for representing complex changes

Complex change modeling some real world phenomenon can be composed of a large
number of basic changes. Similar to the graph generalizations (Stell and Worboys
1999), it can be useful to represent a complex change by an equivalent change
in a unified form. For example, the complex change shown in Figure 5(b) can
be simplified by combining the first two basic inserts into a single basic insert.
The resulting equivalent change is shown in Figure 7. Can we further simplify the
resulting change? In this section, we provide a normal form and prove that any
complex change can be expressed in this form.

Definition 12 A change is defined to be in normal form if and only if it is com-
posed in the given order of four basic changes, represented by:

T0
γ0��� T1

γ1��� T2
γ2��� T3

γ3��� T4
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Figure 7. A simplification of complex change in Figure 5(b)

in which, T0
γ0��� T1 is a basic insert (or no change). T1

γ1��� T2 is a basic split (or
no change). T2

γ2��� T3 is a basic merge (or no change). T3
γ3��� T4 is a basic delete

(or no change).

In this section, we prove that any complex change is equivalent to a change
represented in normal form. We begin by presenting some technical results on
trees and morphisms used to prove our main results. The proofs and detailed
interpretations of the three lemmas are presented in appendix A. Note: we use
ϕ to represent a general function, ι to represent an injective function, and σ to
represent a surjective function. We also use I, S, M , D as abbreviations of insert
(or no change), basic split (or no change), basic merge (or no change), and basic
delete (or no change) respectively.

Lemma 1 Let T1 and T2 be trees, and ϕ be a tree morphism from T1 to T2. Then,
it is possible to find another tree T

′
, an injective tree morphism ι from T1 to T

′
,

and a surjective tree morphism σ from T
′
to T2, satisfying:

(1) ι ◦ σ = ϕ.
(2) Let S1 = V (T

′
)\img(ι) and S2 = V (T2)\img(ϕ). Then σ defines a bijection

between S1 and S2, by restricting the domain of σ to S1.

T1 T2

T
′

�ϕ

�
��ι �

��
σ

Lemma 2 Let T2 and T3 be trees, ι be an injective tree morphism from T2 to T1,
and ϕ be a tree morphism from T2 to T3. Then, it is possible to find a tree T

′
, an

injective tree morphism ι
′

from T3 to T
′
, and a tree morphism ϕ

′
from T1 to T

′
,

satisfying:

(1) ι−1 ◦ ϕ = ϕ
′ ◦ ι

′−1.
(2) If ϕ is surjective, then ϕ

′
is surjective. If ϕ is injective, then ϕ

′
is injective.

(3) Let S1 = V (T1)\img(ι) and S2 = V (T
′
)\img(ι

′
). Then ϕ

′
defines a bijec-

tion between S1 and S2, by restricting the domain of ϕ
′
to S1.

(4) Let S3 = V (T3)\img(ϕ) and S4 = V (T
′
)\img(ϕ

′
). Then ι

′
defines a bijec-

tion between S3 and S4, by restricting the domain of ι
′
to S3.

T1 T2

T
′ T3

�
ϕ

′

� ι

�
ϕ

�
ι
′



Lemma 3 Let T1, T2 and T3 be trees, σ1 be a surjective morphism from T1 to T2,
and σ2 be a surjective morphism from T3 to T2. Then, it is possible to find two
trees T

′
4 and T

′
5, a surjective morphism σ

′
1 from T

′
4 to T1, a surjective morphism σ

′
2

from T
′
4 to T

′
5, and an injective morphism ι

′
from T3 to T

′
5, satisfying σ1 ◦ σ−1

2 =
σ

′−1
1 ◦ σ

′
2 ◦ ι

′−1.

T1 T2 T3

T
′
4 T

′
5

�σ1 �σ2

�
ι
′

�
�

��

σ
′
1

�σ
′
2

We next discuss some special complex changes, after which the discussion will
be extended to arbitrary complex changes.

Definition 13 An MD-change is defined to be a complex change of the form:

T0
γ0��� T1

γ1��� T2

in which, T0
γ0��� T1 is a basic merge (or no change), and T1

γ1��� T2 is a basic delete
(or no change).

Definition 14 An SMD-change is defined to be a complex change of the form:

T0
γ0��� T1

γ1��� T2
γ2��� T3

in which, T0
γ0��� T1 is a basic split (or no change), T1

γ1��� T2 is a basic merge (or
no change), and T2

γ2��� T3 is a basic delete (or no change).

Theorem 1 Any complex change that is arbitrarily composed of basic merges and
basic deletes is equivalent to an MD-change.

Proof : It is straightforward to prove this theorem if the complex change C is
composed of only basic merges, or C is composed of only basic deletes. So, consider
the case in which C is composed of both basic merges and basic deletes in any order.
By composing adjacent basic merges into one basic merge and adjacent basic deletes
into one basic delete, we are able to obtain a complex change C ′ which is equivalent
to C, and is composed of a sequence of MD-changes.

Consider two adjacent MD-changes of the form:

T1 T2 T3 T4 T5

| | |

�σ1 �ι1 �σ2 �ι2

� � � � � � � � � � � � � � � � � � � � � ��MD−change
� � � � � � � � � � � � � � � � � � � � � ��MD−change

in which, σ1, σ2 are surjective morphisms specifying basic merges, and ι1 and ι2
are injective tree morphisms specifying basic deletes.

Using Lemma 2, we are able to construct a tree T
′
6, a surjective tree morphism

σ
′
3 from T2 to T

′
6, and an injective tree morphism ι

′
3 from T4 to T

′
6, satisfying the

condition that the complex change from T2 to T4 specified by the sequence σ
′
3 and

ι
′
3 is equivalent to the complex change from T2 to T4 specified by the sequence ι1

and σ2. (See corollary 3 in appendix A for a detailed explanation.)



T
′
6

T2 T4

T1 T3 T5

���
σ

′
3

���
ι
′
3

�
��
σ1 �

��
ι1 �

��
σ2 �

��
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Hence, the composition of the two adjacent MD-changes will be equivalent to
one MD-change, which is composed of a basic merge from T1 to T

′
6 specified by

σ1 ◦ σ
′
3, and a basic delete from T

′
6 to T5 specified by ι2 ◦ ι

′
3.

Repeating this procedure, we finally get one MD-change, which is equivalent to
the complex change C.

�

Theorem 2 Any complex change, which is arbitrarily composed of basic splits,
basic merges, and basic deletes, is equivalent to a SMD-change.

Proof : It is straightforward to prove this theorem if complex change C is com-
posed of only basic splits, or is composed of basic merges and basic deletes. So,
consider the case in which complex change C contains basic splits, as well as some
basic merges and basic deletes in any order. By composing adjacent basic merges
and basic deletes to form one MD-change and adjacent basic splits to form one ba-
sic split, we obtain a complex change C ′ which is equivalent to C, and is composed
of a sequence of SMD-changes.

Consider two adjacent SMD-changes of the form:

T1 T2 T3 T4 T5 T6 T7

| | |

�σ1 �σ2 �ι1 �σ3 �σ4 �ι2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��SMD−change
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��SMD−change

in which, σ1 and σ3 are surjective morphisms specifying basic splits, σ2 and σ4 are
surjective morphisms specifying basic merges, and ι1 and ι2 are injective morphisms
specifying basic deletes. Since there is a tree morphism σ3 ◦ ι1 from T5 to T3, using
Lemma 1, we are able to find a tree T

′
8, an injective tree morphism ι

′
3 from T5 to

T
′
8, and a surjective morphism σ

′
5 from T

′
8 to T3, satisfying the condition that the

complex change from T3 to T5 specified by the sequence ι1, σ3 is equivalent to the
complex change from T3 to T5 specified by the sequence σ′

5, ι
′
3. (See corollary 1 in

appendix A for a detailed explanation.)
Since there is a surjective tree morphism from T2 to T3 and a surjective morphism

from T
′
8 to T3. Then, using Lemma 3 we are able to find trees T

′
9 and T

′
10, together

with tree morphisms σ
′
6, σ

′
7 and ι

′
4. Here, σ

′
6 and σ

′
7 are surjective morphisms from

T
′
9 to T2 and from T

′
9 to T

′
10 respectively. ι

′
4 is an injective morphism from T

′
8 to

T
′
10. Therefore, the complex change from T2 to T

′
8 specified by the sequence σ

′
6, σ

′
7

and ι
′
4 is equivalent to the complex change from T2 to T

′
8 specified by the sequence

σ2 and ι
′
5.
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It follows that the composition of the two adjacent SMD-changes is equivalent to
one SMD-change, which is composed of a basic split specified by σ

′
6 ◦ σ1, and a

MD-change composed of basic merges and basic deletes specified by the sequence
σ

′
7, ι

′
4, ι

′
3, σ4 and ι2, respectively.

Repeating this procedure, we finally get one SMD-change, which is equivalent to
the complex change C. �

We are now ready to prove the main result of this section.

Theorem 3 Any complex change is equivalent to a complex change in normal
form.

Proof : It is straightforward to prove this theorem if complex change C is com-
posed of only basic inserts, or is composed of basic changes of any type except
basic inserts.

So, consider the case in which C is composed of basic inserts, as well as other
types of basic changes in any order. By composing adjacent basic splits, basic
merges and basic deletes together to make one SMD-change, and composing ad-
jacent basic inserts together to one basic insert, we are able to obtain a complex
change C ′, which is composed of a set of changes in normal form.

Using Lemmas 1 and 2, we can prove that for any complex change composed of a
SMD-change followed by a basic insert, we are able to find an equivalent complex
change composed of a basic insert followed by a SMD-change change. Hence, any
two adjacent complex changes in normal form can be composed together to form
one complex change in normal form. (See corollaries 2,4,5 in appendix A for a
detailed explanation.)

Repeating this procedure, we finally get one complex change in normal form that
is equivalent to the complex change C.

�

5. Properties of the normal form

In the previous section, we introduced a normal form, and proved that every change
is equivalent to a complex change in normal form. In this section we will show that



all four types of basic change are required as constituents to represent every possible
change. We will also prove that no other form composed of four basic changes in a
different sequence from that in normal form can represent all the changes. We first
note without proof the following lemmas:

Lemma 4 Let C be a complex change from T1 to T2, which is composed of basic
changes of any type excluding basic insert. Then, for any vertex v of T2, there is
at least one vertex of T1 that transforms to v through C.

Lemma 5 Let C be a complex change from T1 to T2, which is composed of basic
changes of any type excluding basic split. Then, any vertex v of T1 transforms to
at most one vertex of T2 through C.

Lemma 6 Let C be a complex change from T1 to T2, which is composed of basic
changes of any type excluding basic merge. Then, for any vertex v of T2, there is
at most one vertex of T1 that transforms to v through C.

Lemma 7 Let C be a complex change from T1 to T2, which is composed of basic
changes of any type excluding basic delete. Then, any vertex v in T1 transforms to
at least one vertex of T2 through C.

Based on the four lemmas, we can prove the following theorems:

Theorem 4 Any form, which does not require changes to be composed of all four
basic changes, cannot represent all changes.

Proof : Consider the example shown in Figure 8. Let C be the complex change
from T0 to T4. No vertex of T0 transforms to vertex 5 of T4. By Lemma 4, any
complex change that is equivalent to C must contain a basic insert. Vertex 2 of T0

transforms to two vertices 6,7 of T4. By Lemma 5, any change that is equivalent
to C must contain a basic split. Vertices 2,3 of T0 transform to vertex 7 of T4. By
Lemma 6, any change that is equivalent to C must contain a basic merge. Vertex
4 of T0 does not transform to any vertex of T4. By Lemma 7, any change that is
equivalent to C must contain a basic delete. In all, the complex change C requires
all four types of basic changes. Thus, any form that does not allow all four basic
changes as constituents cannot represent all possible changes. �

Insert Split Merge DeleteT0 T4T1 T2 T3
1

2 3

4

1

2

5

3

4

1

2 3

5 4

6

1 1

7 7

5 4 5

6 6

Figure 8. A complex change

Having proved that the normal form must include all types of basic changes, we
now prove that the four types of basic changes must be structured in a particular
order.

Theorem 5 Any form, in which the changes are composed of the four basic
changes but in a different sequence from the normal form, cannot represent all
changes.



Proof : We prove this theorem by providing examples of changes that cannot be
composed of the four basic changes in a different sequence to ISMD. Consider the
three examples shown in Figure 9. (In the discussion, we use Xi to represent the
component represented by the vertex i.)

1

2

3

1

2

Insert

1

Split
T0 T1 T2

(a) Counter Example 1

1

2

3

4

2

Merge Delete
T0 T2

4

T1

(b) Counter Example 2

1

2 3

1

2 3 4

Split

1

5 4

Merge
T0 T2T1

(c) Counter Example 3

Figure 9. Counter Examples

Figure 9(a) shows a complex change composed of a basic insert and a basic split.
This change starts from the state of a single negative component X1 (the whole
spatial domain). During the change another negative component X3 is split from
X1. The split would never occur before a positive component exists to separate
X1 and X3. The positive component must be introduced by an insert. Thus, this
change can never be equivalent to a complex change, in which there is no basic
split after a basic insert. Hence any normal form, in which there is no basic split
after a basic insert, cannot represent all changes.

Figure 9(b) shows a complex change composed of a basic merge and a basic
delete. In this change, in order to separate components X3 and X1, component
X2 can never be deleted before the X3 is merged with X1. Thus, this change can
never be equivalent to a complex change, in which there is no basic delete after a
basic merge. Hence any normal form, in which there is no basic delete after a basic
merge, cannot represent all changes.

Figure 9(c) shows a complex change composed of a basic split and a basic merge.
At the beginning of the change there are positive components X2 and X3. During
the change, X3 splits. Part of X3 merges with X2 and transforms to component
X5. The rest part of X3 transforms to X4. X3 can never merge with X2 before X3

splits, otherwise it is unable to get X4 at the end of the change. Thus, this change
could never be equivalent to a complex change, in which there is no basic merge
after a basic split. Hence any normal form, in which there is no basic merge after
a basic split, cannot represent all changes.

Based on the three examples, it follows that given any form, if it is composed of
all four basic changes, and can represent any complex change, then the sequence
of the four basic changes are determined as ISMD. This is the sequence of basic
changes in the normal form. �



6. Conclusions and future work

In this paper, we have specified basic and complex changes of areal objects as tree
morphisms. We also proposed a normal form that allows us to formally describe and
compare spatial events according to changes in their topological structure. We are
now able to revisit the examples presented in Figure 5. The change in Figure 5(a)
is already in normal form, and therefore cannot be further simplified. The change
in Figure 5(b) is not, and can be expressed by a simplified change in normal form,
which is composed of a basic insert followed by a basic merge, shown in Figure 10.

T0
Insert

T4 T7
Merge

0 0 0

5 6 65 57 8 910 10

Figure 10. A complex change in normal form equivalent to the change in Figure 5(b)

The work presented here uses a single tree to represent the ‘surrounded by’
relation between components of areal objects. However, there are some topological
properties that cannot be represented by a single tree. For example, our methods
cannot differentiate certain cases where boundaries touch. For example, the two
different splits in Figure 11, presented in (Galton 1997), are considered to be the
same in our model.

(a)

(b)

Figure 11. Two different splits (from (Galton 1997))

We are currently extending the tree model, so that richer topological structures
and topological changes can be represented. One possible avenue for future research
is to represent the topological structures by more than one tree. For example,
trees representing adjacency relationships between region interiors and closures
are capable together of capturing a richer collection of topological relationships.

Our work specifies topological changes based on the topological structures of
areal objects. In order to determine the types of topological changes, sequential
snapshots of areal objects are necessary. However, in many applications, it is some-
what difficult to capture such global information. Thus, it is also important to
specify topological changes based on local, uncertain and incomplete information.
Ongoing work by the authors aims at classifying the topological changes according
to the information in a local area in which a change of areal object is observed. This
theoretical research is currently been applied to an analysis of topological changes



captured as spatially-referenced time series by sensors in the Gulf of Maine (Go-
MOOS 2002).
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