Generating Contours in a Sensor Network Using
Isovector Aggregation

Cheng Zhong
National Center for Geographic
Information and Analysis
University of Maine, Orono, ME, 04469, USA
Email: cheng.zhong @umit.maine.edu

Abstract—Contour maps provide an efficient way to visual-
ize fields sensed by wireless sensor networks. In this paper,
we discuss an energy-efficient technique, Isovector aggregation,
for generating such contours, using a distributed, in-network
approach. Our technique achieves energy efficiency in two main
ways. Firstly, only a selection of nodes near contours are chosen
to report in each sampling round, and each report message
contains information about a part of or the whole contour
rather than any single node’s ID and value pair. Secondly,
contours are progressively merged and simplified along the data
routing tree, which eliminates many unnecessary contour points
from contour vectors before they are transmitted back to the
base station. By Isovector aggregation, the base station receives
complete representations of the contours, and these require no
further processing. Experimental results using simulations show
that the Isovector aggregation approach sends much less data
compared to the no aggregation approach and a well-known
existing spatial-temporal aggregation technique. The Isovector
aggregation approach achieves this energy efficiency without
compromising on the accuracy of representations of the baseline
maps. Indeed, in many cases our approach produces more
accurate representations.

I. INTRODUCTION

The rapid development of wireless sensor technology en-
ables researchers to monitor regions in the physical world. In
order to do this, we can use the value threshold approach [1],
[2], [3]. When a node’s value is higher than the threshold,
we can deem this node to be in a high activity region and it
should report to the base station. Though the threshold-based
approach is simple for implementation, sometimes it is difficult
for users to specify suitable threshold values because such
values are based on different application environments. In this
paper, we address the problem of high activity region mon-
itoring in sensor networks from another approach, contour
map, which provides an alternative way to visualize the entire
monitored field monitored by sensor networks [4], [5], [2].

In wireless sensor networks, one of the most significant
issues is the energy problem. Node-to-node data transmission
consumes most of the energy and dwarfs all other energy
consumption factors [6], [7]. In-network aggregation has been
employed successfully as one of the best ways to save network
energy [4], [2]. Most previous work does not consider how to
generate contours in the network, but rather the base station
has to process all the data received to generate the contour

Michael Worboys
National Center for Geographic
Information and Analysis
University of Maine, Orono, ME, 04469, USA
Email: worboys@spatial.maine.edu

map.

In this paper, we describe a novel technique, Isovector
aggregation, that targets energy efficient data collection from
sensors to generate contours in the network. Energy efficiency
is achieved by choosing only a few reporting nodes and
employing in-network contour generation and simplification.
Our major contributions include the following:

o A ring data structure that is used to generate local contour
vectors between a node and its neighbors.

o Isovector aggregation algorithm for in-network contour
merging and simplification. Each reporting message con-
tains information about a part of or all the contours rather
than any single node’s ID and value pair. The total report
data size is greatly reduced leading to significant energy
savings and the base station does not have to do any
further interpolation to generate a contour map.

o Comparison of Isovector aggregation with existing meth-
ods, including no aggregation and Isolines aggregation
[4]. The results show that Isovector aggregation greatly
out-performs these methods.

The rest of this paper is organized as follows. We briefly
describe related work in section II. The preliminaries of
our work are given in section III. We then present our in-
network Isovector aggregation in section IV. After evaluating
performance in section V, we conclude the paper in section
VL

II. RELATED WORK

In-network aggregation is extensively researched in wireless
sensor networks, and many approaches have been proposed
for different application scenarios. Most previous papers for
contour reporting do not consider how to generate contours
using in-network approaches. These methods have to relay all
or some node information back to the base station, and later
the base station uses such information to interpolate values
to other nodes and then generate contours. Event Contour[5],
Isolines [4] and COUCH [8] all belong to this category.

Papers that mention how to generate contours using in-
network approaches include Isobar [2], EScan [9] and Contour
Matching [10]. They all belong to polygon aggregation, aggre-
gating nodes with the same values into polygons as the data
flows towards the base station. Each node has to participate

in the aggregation by sending not only ID and value but
also location information, which makes polygon aggregation
perform worse than Isolines aggregation [4].

III. PRELIMINARIES

In this section, we give an overview of Isovector aggre-
gation. Then preliminaries of our work are presented. The
assumptions we made in this paper are that each node has a
unique ID and knows its own location through either a GPS or
some GPS-less techniques [11], [12]. Then each node knows
its neighboring nodes locations and IDs by simple node-to-
neighbor communication. We set the default contour scale by
10 if not illustrated specifically. We also call contours contour
vectors because each generated contour is composed of a series
of points and it has a start point and an end point.

A. Aggregation through contours

Contours are defined by assigning different value ranges.
Once the value ranges are defined, we use nodes’ values to
detect contours. If two adjacent nodes are in different value
ranges, there is at least one contour between them and we want
the two nodes to detect a contour through communication.
These nodes are called contour nodes. In order to introduce
our aggregation technique, we begin with a simple straight
line example. More details will be discussed in the following
sections.

O PP
L7 No s

Py ,P;O‘\ N1 N O ‘Pi Puo
N3 ,’/ \‘\ N4 Ns /' R
P1Ps P, Ps, Ps,P7
P CZ P O P P'IO“ P Py tps, Po
))\ Ds) _Ps ;) AN
O O0O00 00000 O

ON PaPu

N
AN

Fig. 1. A straight line contour in a sub-routing tree

Consider a sub-routing tree of the network. Suppose a subset
of nodes detect a horizontal contour (figure 1) between them.
A few reporting nodes N3, N4, N5 and Ng are chosen to
report. Isovector aggregation works as following: N3 detects
the contour and generate three contour points P, P> and P;
which are the mid-points between N3 and the corresponding
neighboring nodes. Based on the three contour points, node N3
then produces a contour vector (P, Ps) and reports it to node
N;p. P is not contained in the vector because it is removed
by N3 as a redundant point. Nodes N4, N5 and Ng work in
the same way as N3. Such process will be repeated along the
data routing tree. Finally, node Ny will merge vector (Py, Ps)
and vector (Pg, P1p) and generate the vector (Py, Pyg). This
vector is sufficient to represent the straight line contour. g
then only has to report vector (P;, Pjg) to the base station.
In this aggregation process, because many redundant data are
removed, the total data transmitted is significantly reduced,
which decreases network energy consumption.

Type Description
Negotiation | Node broadcasting ID, value and location
Query Base station initiating fetching contours
Notification Node broadcasting ID and value
Vector Response message to query

TABLE I
MESSAGE TYPE

B. Contour neighborhood ring

We denote the value at node u by R(u) and its value
range by Range(u). For any two nodes w and v, if u
and v are in the same predefined value range, we have
Range(u) = Range(v), otherwise, Range(u) # Range(v)
(either Range(u) > Range(v) or Range(u) < Range(v)).
For example: if R(u) = 42 and R(v) = 45, u and v are both
in the value range 40-49 and Range(u) = Range(v).

Definition 1 (Contour neighborhood ring): Let u be a node
and vy, v9,...,v, be the one-hop neighbors of u, sequenced
in counterclockwise cyclic order around wu, where a start
node v; is randomly assigned in advance. The contour
neighborhood ring associated with « is a ring data structure
[CN7,CNsy,...,CN,] starting from v; where

R(v;), if Range(u) # Range(v;)

CNi = { null, if Range(u) = Range(v;)

forl1 <i<n.
Figure 2 shows an example of a node representation with
its corresponding contour neighborhood ring.

Fig. 2. A node representation of u and the contour neighborhood ring
(numeric numbers are values of nodes)

C. Message types and time model

We defines four message types (table I). Query message is
broadcasted by the root at the network initialization phase.
It contains query information and helps build the routing
tree. Negotiation message tells the node’s neighbors its ID,
initial value and location, and is only broadcast after receiving
Query message. Negotiation message will be sent when data
changes cause a contour to appear or disappear. The reporting
message Vector contains the reporting node’s ID, contour
vectors and the values of contours.

The time model we use in this paper is based on the
cascading timer [13] designed by Solis and Obraczka. Using
the cascading timer, a node merges contour vectors after it
receives all Vector messages from its children.

IV. ISOVECTOR AGGREGATION

In this section, we present our in-network Isovector aggre-
gation which includes four parts: local contour generation,
reporting node selection, contour simplification and contour
merging. We assume the query for continuous mapping is
processed repeatedly over a series of rounds, where each node
generates a value in each round.

A. Local contour generation

Let the scale denote the contour scale we defined. The
contour scale value together with the null values in the
neighborhood ring divide the ring into several partitions. Then
a local contour vector will be generated for each partition by
counterclockwise order. Each element in a contour vector is the
mid-point between the reporting node and the corresponding
contour neighbor. If a node w is chosen to report and it is
in a higher value range than corresponding neighbors, the
value of the reporting contour vector V' between this node and
those neighbors is set as: Value(V) = (R(u)/scale) * scale.
Otherwise, if u is chosen to report and it is in a lower value
range, the value of the reporting contour vector V' between
this node and corresponding neighbors is set as: Value(V) =
(R(u)/scale + 1) * scale. Besides distinguishing contours of
different values, the partition can be used to recognize narrow
contours. More details about narrow contours are discussed in
[14].

Figure 3 shows an example of a neighborhood ring of a node
and the corresponding local contour vectors. Three partitions
{37, 38}, {56, 52} and {53, 54} exist in the neighborhood ring.
Then local contour vectors (Pp, P»), (Ps, Psy) and (Py, Pg)
will be generated for the three partitions. Each generated
vector has a headID (hID) and a taillD (tID) which are equal
to the reporting node ID.

(ele
9 VE:4/ T53 o

contour :50

contour :50

43 52 l 56

Fig. 3.
vectors

u’s contour neighborhood ring and the corresponding local contour

B. Reporting node selection

Local contour detection in each round is based on neigh-
borhood information received. If the ranges of sensed values
are changed, nodes broadcast Notifications to neighbors in
the beginning of that sampling round. Each node that receives
Notifications compares its own value with neighbors’ val-
ues. Some neighbors’ values might be in the same value range
as the reporting node. As specified before, such corresponding
entries will be set to null and they, together with the scale

value, act as separators to partition the contour neighborhood
ring. If some neighbor values are on different sides of a
contour, then at least one contour exists. When the reporting
timer expires, this node will check if it should report. If it
does, a Vector message will be constructed and transmitted
to the parent.

Contour detection is symmetric. We only choose contour
nodes in the higher value ranges than neighbors to report.
Each vector has a headID and a taillD which are equal to
the ID(s) of the node(s) that report(s) them. Therefore, by
maintaining such information of a contour, the base station
can know which side of the contour is in higher value ranges
and which side of the contour is in lower value ranges. In
some cases, two adjacent nodes may not exist in consecutive
value ranges. In this situation, both node in the lower value
range and the higher value range will report. Figure 4 gives
an illustration.

contour :40
u Vv
35 55

contour :50

Fig. 4. w will report a contour with value 40 between v and v and v will
report a contour with value 50 between u and v.

C. In-network contour simplification

Although a contour vector only contains important contour
point information, such information may be still quite large.
Without losing contour fidelity greatly, we consider how to
weed out redundant points from a contour vector (figure 5).
This problem is also called poly-line simplification which
has been researched over the years. In this paper, we use
the Douglas-Peucker line simplification algorithm for vector
simplification in that it was best at choosing critical points
when compared with others [15]. We should point out that,
although the Douglas-Peucker approach is chosen, any other
poly-line simplification method can be adopted if it can retain
the shape of the original line.

T T
/‘ﬁ

Fig. 5. Simplify a contour vector

D. In-network contour merging

After a node receives Vector messages from its children, it
saves them in a local contour Vector-Array (vArr). If this node
is also a reporting node, local generated vectors will also be
added to the array. When the reporting time comes, the node
merges saved contour vectors and removes redundant points
from all merged contour vectors.

Let V.h (short name of vector head) denote the first point in
the vector and V.t (short name of vector tail) denote the last
point in a vector V. We define the distance D(V7, V3) between
two vectors V4 and Vs as the minimal value of D(V;.h, Va.h),
D(V1.h,Va.t), D(V1.t,Va.h) and D(V;.t, Va.t). If the distance
D(V4,V3) is shorter than a predefined threshold, they should
be connected together. The node continuously merges each
pair of adjacent contours until no two contour vectors are near
enough to each other. In the merging process, any two vectors
sent by the same child node will not be merged no matter how
near the distance is between them. This restriction is used to
avoid generating wrong shapes for narrow contour cases. More
detail is discussed in [14].

Combining local contour generation, reporting node selec-
tion, contour simplification and contour merging together, our
algorithm for Isovector aggregation is shown in algorithm 1.
Each node in the network will run the algorithm.

Algorithm 1 Isovector aggregation
1: while 1 do
2 gets sensed value;
3: if (value range changes) then
4 broadcasts Noti fication;
5: while (monitor events) do
6
7
8

if (receives Notification) then
updates information;
if (receives children’s Vector) then

9: saves Vector;

10: needReport = true;

11: if (reporting timeout) then

12: if (in a higher value range) then

13: generates and saves local contours;
14: needReport = true;

15: else if (in non-consecutive value ranges) then
16: generates and saves local contours;
17: needReport = true;

18: if (needReport) then

19: merges vectors;

20: simplifies vectors (Douglas-Peucker);
21: composes a Vector and reports;

E. The base station

At the end of each sampling round, the base station will
receive some contour vectors. It does similar merging opera-
tions to the inner nodes, except that contour vectors sent by the
same node can be merged together. In this way, we generated
an integrated contour map.

V. EVALUATION

Isolines aggregation performs significantly better than poly-
gon aggregation [4]. In this section, we evaluate Isovector
aggregation by simulation in the NS2 [16] environment and
compare it with Isolines aggregation. Isovector aggregation is
also compared with no aggregation method in which nodes
simply send their ID and values to the base station thought

the routing tree. Negotiations with neighbors are not required.
In the following simulation, Node ID, location information and
value are all 2 bytes long.

A. Simulation setup

We use a sensor network consisting of 16x16 nodes arranged
in a 400m? evenly spaced grid to monitor temperature. The
base station is placed in the center of the network. The
routing tree is built in the network initialization phase by
broadcasting Query from the base station. We should point
out that, although, in these experiments, nodes are placed
according to a grid pattern, similar to Isolines, Isovector is
not specific to grid placement. For medium access control,
nodes use CSMA at 196Kbps. Their transmission range is
set to 40m so each node has 8 neighbors except the outer
layer nodes. FLIP [17] was used as the network protocol. The
distance tolerance used for the Douglas-Peucker algorithm is
6m and the distance threshold for connecting 2 contour vectors
is 14m which is less than the distance between any 2 adjacent
nodes. The contour scale is set to 10.

There are two simulation scenarios for temperature mon-
itoring. The first case is to detect static contours to form a
contour map snapshot. In the second scenario, we focus on
continuous contour monitoring.

We have two criteria for measurement. (1) Data transmis-
sion size which reflects the energy consumption by different
methods. (2) Contour map similarity which maps to the query
precision by different methods. The contour map similarity
is calculated as the percentage of points (80*50 points are
placed on the map) that are actually in correct value ranges
when compared to the baseline map. ArcView GIS is used
for interpolation and visualization. We should point out that
only the no aggregation method and Isolines aggregation need
interpolation by ArcView GIS. Isovector does not need to do
this since contour generation is part of the algorithm.

B. Static contours

An irregular contour map, in which 41 percent of nodes
are contour nodes, is used for evaluation. Figure 6 is the
baseline map generated by all sensor values. Figure 7, 8 and
9 are examples of maps generated by reporting data of the no
aggregation method, the Isolines and the Isovector aggregation
respectively. Table II gives the simulation results. As we
can see from the table, after drawing contours generated by
Isovector aggregation, we get a contour map which is highly
similar to the baseline map. Isovector sends much less data
than Isolines aggregation. For no aggregation method, we find
that, due to the huge network traffic caused by no aggregation
method, nearly 40 percent of reports, including many reports
sent by contour nodes, are automatically dropped by the
network. Hence, the no aggregation method does not achieve
significantly better map similarity than the other approaches.

C. Moving contours

In our continuous monitoring scenario, we simulate a front
moving in from left to right. Temperature increases from the

Baseline map snapshot

Fig. 7. Map with no Agg.

Similarity Data sent (Bytes)

no Agg. | 96.64% (sd 0.49%) 12111 (sd 534)
Isolines 94.94% (sd 1.16%) 6177 (sd 345)
Isovector | 96.03% (sd 0.51%) 4175 (sd 263)

TABLE 11
CONTOUR MAP SNAPSHOT

Similarity (9s) Data sent (Bytes)

no Agg. 98.0% (sd 0.72%) | 110994 (sd 3074)
Isolines 97.7% (sd 0.48%) 26855 (sd 839)
Isovector 98.5% (sd 0.2%) 16617 (sd 807)

TABLE III
MOVING CONTOURS

thirties to the fifties in about 50 meters. The front moves to the
right in 9 seconds. The starting value of all points is centered
at 35 degrees. The base station, which is placed at the center
of the map, starts by initializing the network at time 1s. From
time 3s to 11s, nodes report their temperature values in each
second. The simulation is stopped at time 12s.

We count the total data sent and also take a map snapshot at
9s for comparison. Table III gives the simulation results. From
the table we know that, benefiting from contour vector merging
and simplification, Isovector aggregation also sends much less
data than Isolines aggregation in the continuous monitoring
scenario. The contour map similarity by Isovector is slightly
better than Isolines. No aggregation technique sends much
more data than Isovector and Isolines. More results about this
scenario and other scenarios can be found in [14].

VI. CONCLUSION AND FUTURE WORK

Isovector aggregation is a new approach to achieve energy
conservation in wireless sensor networks. Its main advantages
are its in-network contour generation and simplification which
make Isovector aggregation energy efficient. Our simulation
results suggest that Isovector achieves good performance and
energy saving compared to other approaches.

There is a dense contour case that Isovector aggregation
cannot handle properly. Between two neighboring nodes,
Isovector aggregation reports at most two different contours.
If two neighboring nodes have large value differences, then
it is possible that some contours between them will not be
reported. This is the subject of future work.

Fig. 8. Map with Isolines Fig. 9. Map with Isovector

ACKNOWLEDGMENT

This work is supported by the US National Science Foun-
dation under grant number IIS-0534429. Mike Worboys’ work
is also supported by the US National Science Foundation
under grant numbers I11S-0429644 and DGE-0504494. He is
also grateful for the support of the Ordnance Survey of Great
Britain.

REFERENCES

[1] D. J. Abadi, S. Madden, and W. Lindner, “Reed: Robust, efficient
filtering and event detection in sensor networks.” in VLDB, 2005, pp.
769-780.

[2] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond average:
Toward sophisticated sensing with queries.” in /PSN, 2003, pp. 63-79.

[3] Y. Yao and J. Gehrke, “Query processing in sensor networks.” in CIDR,
2003.

[4] 1. Solis and K. Obraczka, “Efficient continuous mapping in sensor
networks using isolines.” in Proc. of the 2005 MobiQuitous, 2005, pp.
325-332.

[5] X. Meng, L. Li, T. Nandagopal, and S. Lu, “Event contour:an efficient
and robust mechanism for tasks in sensor networks,” Technical Report,
UCLA, 2004.

[6] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors.”
Communications of the ACM, vol. 43, no. 5, pp. 51-58, 2000.

[71 V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network ap-
plications.” in SenSys, 2004, pp. 188-200.

[8] A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: on
energy-efficient continuous monitoring in sensor networks.” in Proc. of
the 2006 ACM SIGMOD Intl. Conf. on Management of Data, 2006, pp.
157-168.

[9] J. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for moni-
toring wireless sensor networks.” in IEEE Wireless Communications and
Networking Conference, 2002, pp. 145-156.

[10] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for event
detection in sensor networks.” in SIGMOD Conference, 2006, pp. 145—
156.

[11] X. Cheng, A. Thaeler, G. Xue, and D. Chen, “Tps: A time-based po-
sitioning scheme for outdoor wireless sensor networks.” in INFOCOM,
2004.

[12] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization
from mere connectivity.” in MobiHoc, 2003, pp. 201-212.

[13] I Solis and K. Obraczka, “The impact of timing in data aggregation for
sensor networks,” in Proc. of the IEEE intl. Conf. on Communication,

2004.
[14] C. Zhong, “Isovector: Generating contours in sensor
networks,” Technical Report, University of Maine, 2007.5,

http://www.spatial. maine.edu/ czhong/tr0702.pdf, 2007.

[15] E. White, “Assessment of line-generalization algorithms using charac-
teristic points.” The American Cartographer, vol. 12, pp. 17-27, 1985.

[16] “Ns 2.” http://www.isi.edu/nsnam/ns/.

[17] I. Solis and K. Obraczka, “Flip: A flexible interconnection protocol for
heterogeneous internetworking.” MONET, vol. 9, no. 4, pp. 347-361,
2004.

